A Graph-Theoretic Method for Choosing a Spanning Set for a Finite-Dimensional Vector Space, with Applications to the Grossman-Larson-Wright Module and the Jacobian Conjecture

نویسنده

  • Dan Singer
چکیده

It is well known that a square zero pattern matrix guarantees non-singularity if and only if it is permutationally equivalent to a triangular pattern with nonzero diagonal entries. It is also well known that a nonnegative square pattern matrix with positive main diagonal is sign nonsingular if and only if its associated digraph does not have any directed cycles of even length. Any m × n matrix containing an n × n sub-matrix with either of these forms will have full rank. We translate this idea into a graph-theoretic method for finding a spanning set of vectors for a finitedimensional vector space from among a set of vectors generated combinatorially. This method is particularly useful when there is no convenient ordering of vectors and no upper bound to the dimensions of the vector spaces we are dealing with. We use our method to prove three properties of the Grossman-Larson-Wright module originally described by David Wright: M(3,∞)m = 0 for m ≥ 3, M(4, 3)m = 0 for 5 ≤ m ≤ 8, and M(4, 4)8 = 0. The first two properties yield combinatorial proofs of special cases of the homogeneous symmetric reduction of the Jacobian conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Jacobian Conjecture as a problem in combinatorics

The Jacobian Conjecture has been reduced to the symmetric homogeneous case. In this paper we give an inversion formula for the symmetric case and relate it to a combinatoric structure called the Grossman-Larson Algebra. We use these tools to prove the symmetric Jacobian Conjecture for the case F = X−H with H homogeneous and JH = 0. Other special results are also derived. We pose a combinatorial...

متن کامل

A module theoretic approach to‎ ‎zero-divisor graph with respect to (first) dual

Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...

متن کامل

Vector Space semi-Cayley Graphs

The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...

متن کامل

The Sum Graph of Non-essential Submodules

Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...

متن کامل

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009